A neural network approach to character recognition

نویسندگان

  • A. Rajavelu
  • Mohamad T. Musavi
  • Mukul Vassant Shirvaikar
چکیده

In this paper, an attempt is made to develop off-line recognition strategies for the isolated Handwritten English character(A to Z) and (0 to 9). Challenges in handwritten character recognition wholly lie in the variation and distortion of handwritten characters, since different people may use different style of handwritten, and direction to draw the same shape of the characters of their known script. The paper provides a review on the process of character recognition using neural network. Character recognition methods are listed under two main headlines. The Offline methods use the static images properties. The Offline methods are further divided into four methods, which are clustering, Feature Extraction, Pattern Matching and Artificial Neural Network. The Online methods are subdivided into k-NN classifier and direction based algorithm. Character preprocessing is used binarization, thresolding and segmentation method. Neural network based method improves the character recognition. The proposed method is based on the feed forward back propogation method to classify the characters. The ANN is trained using the Back Propogation algorithm. In the proposed system, English nue-merical letter is represented by binary numbers that are assume as input and fed to an ANN. Neural network followed by Back Propagation Algorithm which compromises Training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

A Novel Approach of Handwritten Devanagari Character Recognition through Feed Forward Back Propagation Neural Network

Handwritten character recognition plays an important role in the modern world. It can solve more complex problems and makes human’s job easier. The present paper portrays a novel approach in recognizing handwritten devanagari character through feed forward back propagation neural network. All the experiments are conducted by using the Artificial Neural Network tool of Matlab.

متن کامل

High Accuracy Myanmar Handwritten Character Recognition using Hybrid approach through MICR and Neural Network

This paper contributes an effective recognition approach for Myanmar Handwritten Characters. In this article, Hybrid approach use ICR and OCR recognition through MICR (Myanmar Intelligent Character Recognition) and backpropagation neural network. MICR is one kind of ICR. It composed of statistical/semantic information and final decision is made by voting system. In Hybrid approach, the features...

متن کامل

Multi-class SVM Classifier With Neural Network For Handwritten Character Recognition

The paper describes the process of character recognition using the Multi Class SVM classifier combined with a neural Network approach. The character recognition techniques or the OCRs are either a printed document recognition or the handwritten character recognition. SVM (Support Vector Machine) classifiers often have superior recognition rates in comparison to other classification methods. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Networks

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1989